Research Fellow in S UCL Institute for Inno

Associate Professor UCL Institute for Inne

Senior Research Imp Global Systems Inst

Chair in Climate Ch Global Systems Inst inance Public Purpose

s and Finance Public Purpose

sity of Exeter

rth System Science sity of Exeter

Global Systems Institute

ekaii.

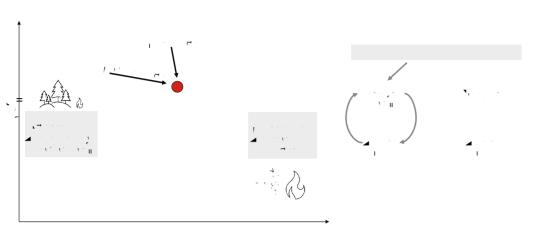
🛛 🖾 · · · E ⊠ ⊠ ;_⊠ _____; _____ ⊠ _____.

P 🛛 🖾 🖾 😳 , 🖾 🖾 _

⊠·, ·___. · ___. (E P): -· , - ··__ ⊠ · - -

KEP 🛛 E \cdots 🖓 : · A · · - ; · · · ; ; ; ; · EP .

A____ EP··· – . A · , · \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}


_ CO₂ · · · **⊠ X** 20

- 🛛 ··· , · _ · _ · _ · _

• 7 • 7 7 • 7 7 • 7 7 • 7

· _· _ · · · · × X _ _ - · · · _ ·

- G A · · · _ · · _ · ,

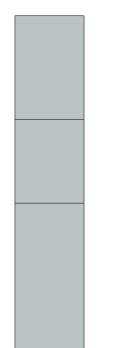
• * * ***** • * *****

⊠_ ⊠ · · · ⊠ · · ·

77 C 77 7 7 L 97

Regulating and maintenance services

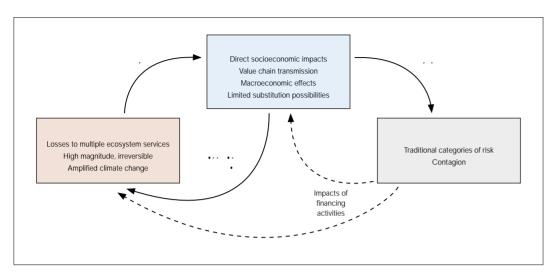
_X _ , · · _· · , 🛛 , · · · , - ··- A · ·- · · . · A · .¹⁰ L 🛛 _ ,_ X Μ · 🛛 · . A · 🖾 · _ · _ · · · · · · · · · · · · . A . ⁵¹. _ . _ . . M·;⁵² ⊠ ·, ·⊠·_ · P ⊠


	,	, –		X - ·	· 🛛	. A
⊠	,	,	,			(N FP) 🛛
⊠	, B	· 🛛 ,		• . ^{65, 67} M		
	⊠			· . ³⁸ C	. ^{68,69} A	
				_		X X
	^{58,70} E	-	 X	· · -	ЕР ·	
	-				•	

Cultural services and intrinsic value

F٠	,		•	$oldsymbol{\boxtimes}$ $oldsymbol{\boxtimes}$,	
⊠			⊠	'- '-	
		,		,	•

⊠ .2 (8581.7 .4 (19 ()-66 ()5)4.2 38(·_)5 () 1 5()-6.7 (·)6.11 ()-6)-13.1(**⊠**)4.5 ()8


- 🛛 · · 🛛	XA ·	⊠ A·,
_· · X ·	- 1	· · · -
· · · · –	🛛 · · · · ·	
	- 🛛 · _	· , ·
· · · · - · 🛛	-	72,85
· · _ · 🖂 🛛 🖾	··· ,	· · ,
	-	· · 🛛
•		· · · · · ·
· · . ⁸⁶ F	, 2021 🛛	· · B ·
·_ · · · · , ·		
· · · 🛛 · _		
. ⁸⁸ C		

A 🛛 ·			- '	
	,		-	
O 🛛 🖄 .	-	- • •	۸	
	· A		• • -	
. ¹¹² M ,	2016 2023,			
_ \$300 · · · ·	· _ (· _ · _			
···) · 🛛	- · ·	<i>.</i> .	, ,	
·, · , 🛛 🖾	×			
– EP ¹¹³ (1). I	, · · ·			
⊠_ ⊠ · · ·			. ,114	
			-	
4 O() O(())6.21 X)42()-10.649,4	-0.004	0 -1	_ 4

• • • • • •

· · · ·

• 7 • • 7

EP⊠ ·⊠ · · · · · , ·⊠·_ , · ·⊠ · · · · · , ⊠ · · · · · · · ·

С · · _ · , · · М · · М · · ⊠ - ' EP, 🛛 🖾 💷 · · · · 💷 · · X. . EP··· **N**, 🛛 N 🖾 -F· · D· 🛛 (NFD) , <u>.</u> .. 128 А · · · EP · , · , $\boxtimes \qquad \cdots \qquad \cdot, \qquad \boxtimes \qquad \boxtimes \qquad \cdots \qquad \cdot$ X XX · · _ X · · · X · H · , 🛛 material 🖾 \cdots , 👾 🖾 · · · · · · · · · · · · · · · · · , 🛛 _ · _ 🖾 · · , ¹⁰⁹ G _ - _ _ **M** EP **M** M····, · · · · _ 🛛 Χ. ⊠. , . ⊠.

, · 🛛 · _	133		
	, · 🛛 - 🛛	· · _ · , 🛛	
NGF ,		B I ·	
(BI)	I · M	FMM (IMF).	
P. M			
		· ·· EP	
·	ante. E P	- , 🛛 ,	•

•

0 c 0 0 0 7

- 3. A , M. . (2018). : G _ 1.5°C. Intergovernmental Panel on Climate Change (IPCC).
- 5. **PIX** · , A. . . (2019). Chapter 2.2 Status and Trends – Nature. A · : <u>:// . ./</u> <u>/5517457</u>. DOI:10.5281/ .5517457.
- 7. , J. . (2023). 🛛 E 🖓 . *Nature* 1, 10. DOI:10.1038/ 41586-023-06083-8.
- 8. , , , C , G. , A , J. D _ , J. A. (2023). E A . . Nature Sustainability 6, 1331, 1342.
- 9. F , B. M. . (2024). C · · · · · . A . *Nature* 626, 555, 564.
- 10. L , . E. N , C. (2018). A -_ P . *Science Advances* 4, 2340.
- 11. , A. . (2020). H 21 🛛 . Nature Communications 11, 4978.
- 12. , D. C. . (2017). -

E _ I D F D _ . I Science Panel for the Amazon -Amazon Assessment Report 2021.

- 61. G , L. . . (2021). A X Nature 595, 388, 393.
- 62. N -B , N. (2018). M _ 2015 I 🛛 -CO . Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170307.
- 64. L , J. . (2021). E 🛛 🕅 🕅 🕅 Nature Climate Change 11, 70, 77.
- 65. , J. (2018). **X** B A F E . Nature Sustainability 1, 657, 664.
- 66. L , C. . (2020). H B . . . Nature Ecology & Evolution 4, 172, 173.
- 67. , M. . (2023). F**X X X** . _ . *Global Change* Biology, 29, 1484, 1500.
- 68. , A. J., H. , C. C., N , A. , , G. J. G , N. A. J. (2019). C A . Functional Ecology, 33, 1023, 1034.
- 69. , G. J. (2023). C **X X** (MA) **X** -? Science Advances, 9, 4942.
- 71. · · _ , A., H , M. , C. (2020). · · IPCC · A -· ⊠ - · _ G⊠ · ⊠ · , G⊠ · IPCC ⊠ .
- 72. , N. . (2023). The Green Scorpion: The Macro-Criticality of Nature for Finance: Foundations for Scenario-Based Analysis of Complex and Cascading Physical Nature-Related Financial Riskn nshrnkn nn tJJTcon.1 (f C)-25..4(a)-1:BF(e)-2

114. M -A , A, P , C, N , K. A. ⊠ , J. .(2019). Environmental Research Letters, 14, 084021.

116. ☑, ., J ·, ., L , . O · , J. (2023). *The Emperor's New Climate Scenarios.*

117. NGF . (2023). NGF C · · ·

13.463 0.8 ()-18.8 (14)-90./ 1 1()-11 (0)-81.2 (2)-7.1 () -1. 17-7.1 - 17 () .B (0)-60 (0) -20.4 ()-15.9 () 2.0.01 ()-2.2F)5 (4.2 0.() 12.9 (()-2.1 () 2.1 () 0.8 -)-97 -0.04A ()7(0)-12.6 ())-15.6 ()-2.4 (G)-438 -1.286 -17.4 ()-12.9 () (7)-20.4 (70. 117.-28 () 4 0 C () 7(0)-2.2E ()-2.1 () 2.1 () 0.8 14 03 -0.0.4A () 7(0)-12.6 () G -1794 ()-9.9 () (7)-20.4 (70.8 -14 03)-7.1 ()-17 -30 C 1 7-17 -33. () 17-33. () -1 () 3() -9.4 () -2.2 () 2.2 () 2.2 () 2.2 () 2.2 () 0.8 14 03 -0.0.4A () 7(0)-12.6 () G -1794 () -9.9 () (7)-20.4 (70.8 -14 03)-7.1 () -17 -33. () 17-33. () -1 () 3() -9.4 () -2.2 () -14 () 3() -9.4 () -2.2 () 2.2 ()